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Temporal spike pattern learning
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Sensory systems pass information about an animal’s environment to higher nervous system units through
sequences of action potentials. When these action potentials have essentially equivalent wave forms, all
information is contained in the interspike intervals (ISIs) of the spike sequence. How do neural circuits
recognize and read these ISI sequences? We address this issue of temporal sequence learning by a neuronal
system utilizing spike timing dependent plasticity (STDP). We present a general architecture of neural circuitry
that can perform the task of ISI recognition. The essential ingredients of this neural circuit, which we refer to
as “interspike interval recognition unit” (IRU) are (i) a spike selection unit, the function of which is to
selectively distribute input spikes to downstream IRU circuitry; (ii) a time-delay unit that can be tuned by
STDP; and (iii) a detection unit, which is the output of the IRU and a spike from which indicates successful IST
recognition by the IRU. We present two distinct configurations for the time-delay circuit within the IRU using
excitatory and inhibitory synapses, respectively, to produce a delayed output spike at time 7+ 7(R) in response
to the input spike received at time #,. R is the tunable parameter of the time-delay circuit that controls the
timing of the delayed output spike. We discuss the forms of STDP rules for excitatory and inhibitory synapses,
respectively, that allow for modulation of R for the IRU to perform its task of ISI recognition. We then present
two specific implementations for the IRU circuitry, derived from the general architecture that can both learn the
ISIs of a training sequence and then recognize the same ISI sequence when it is presented on subsequent

occasions.
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I. INTRODUCTION

Sensory systems transform environmental analog signals
into a format composed of essentially identical action poten-
tials. These are sent for further processing to other areas of
the central nervous system. When the action potentials or
spikes are comprised of identical wave forms all information
about the environment is contained in the intervals between
spike arrival times [1]. There are many examples of sensitive
stimulus-response properties characterizing how neurons re-
spond to specific stimuli. These include whisker-selective
neural response in barrel cortex [2,3] of rats and motion sen-
sitive cells in the visual cortical areas of the primates [4,5].

One striking example is the selective auditory response of
neurons in the songbird telencephalic nucleus HVC (used as
a proper name) [6-9]. Projection neurons within HVC fire
sparse bursts of spikes when presented with auditory play-
back of the bird’s own song (BOS) and are quite unrespon-
sive to other auditory inputs. Nucleus NIf (interfacial nucleus
of nidopallium), through which auditory signals reach HVC
[6,10-12], also strongly responds to BOS in addition to re-
sponding to a broad range of other auditory stimuli. NIf
projects to HVC, and the similarity of NIf responses to the
auditory input and the subthreshold activity in HVC neurons
suggests that NIf could be acting as a nonlinear filter for
BOS, preferentially passing that important signal on to HVC.

It was these examples from birdsong that led us to address
the interspike interval (ISI) reading problem. Based on ob-
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served neural circuitry in the songbird brain, we proposed
[13] a neural circuit comprised of inhibitory synapses, that
can train itself to respond to a given temporal sequence of
input spikes using spike timing dependent plasticity (STDP)
of inhibitory synapses [14]. In this paper we consider the
general problem of ISI recognition and elaborate the key
ingredients essential to any neural circuitry assigned the task
of ISI recognition. We demonstrate how biologically realistic
neurons and synapses can be used to construct and train such
a network to decode the temporal information in the input
spike pattern. We call the resulting networks, an ISI reading
unit (IRU). It should be noted that by “decoding” we mean
the recognition of a specific ISI sequence on which the net-
work was trained in preference to any other ISI sequence.

Key to the functioning of an IRU are two biological pro-
cesses:

(1) A time-delay unit which produces an output spike at
time 7y+7(R) in response to an input spike at time #,. R is a
dimensionless parameter characterizing the strength of a syn-
apse within the time-delay circuit that can be used to tune the
time delay 7(R).

(2) A method for tuning the time delays 7(R) in the IRU
using observed synaptic plasticity rules [14—16].

Time-delay circuits, thought of primarily as an abstract
idea rather than as a particular biological circuit realization,
have been considered before [17-19]. One exception to the
descriptive modeling of neural time keeping processes is the
work of Buonomano [20] which studies a two neuron model
that can be tuned to respond to time delays. Buonomano
identifies synaptic changes as the tuning mechanism that
might underlie detection of time intervals. His model relies
on a balance between excitatory and inhibitory synaptic
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strengths. We do not explore the scheme proposed by Buono-
mano here; instead we present an alternative general scheme
to decode the ISI signal.

As discussed by earlier authors, circuits for marking time
more or less divide into three categories:

(1) Time delays along pieces of axon resulting in delays
as short as a few microseconds. These are found in detection
circuits for interaural time differences [11,21-23];

(2) Time delays of order hours or days connected with
circadian rhythms. A detailed model of the biochemical pro-
cesses thought to underly the =24 h circadian rhythm is
found in recent work by Forger and Peskin [24,25], where a
limit cycle oscillator with a period slightly more than 24 h is
identified and analyzed.

(3) Time delays of tens to hundreds of milliseconds asso-
ciated with cortical and other neural processing [26].

Our realization of the time-delay circuit addresses this
third category of time keeping.

In investigating time differences between signals propa-
gating from the birdsong nucleus HVC directly to the pre-
motor nucleus RA (robust nucleus of acropallium) and the
same signal propagating to RA around the neural loop known
as the anterior forebrain pathway (AFP), Kimpo, Theunissen,
and Doupe [26] reported a remarkable precision of the time
difference between these pathways of 50 10 ms across
many songbirds and many trials.

As we developed models of this phenomenon and its im-
plications, along with excitatory synaptic plasticity at the
HVC—RA junction, we [27] constructed a circuit of neu-
rons based on detailed electrophysiological measurements by
Perkel and his colleagues [28,29], in each of the three nuclei
of the AFP. This circuit demonstrated a tunable time delay
adjusted by the strength of inhibition at a synapse from the
nucleus area X to the nucleus dorsolateral thalamus (DLM).
The precise value of the time delay in the birdsong circuit
was attributed to a fixed point in the overall dynamics in-
cluding excitatory synaptic plasticity at the HVC — RA junc-
tion. This investigation suggested a general form of the time-
delay circuit that could be tuned by changing the strength of
an inhibitory synaptic connection. A short summary of this
idea was presented in [13].

Here we begin with the description of a general neural
architecture for the IRU. An essential circuit component in
the IRU is a “spike selection unit” (SSU), the purpose of
which is to selectively distribute input spikes to downstream
elements in the IRU. We present a particular implementation
of the SSU circuitry using biologically realistic neuron mod-
els. We then present two general schemes for the construc-
tion of the time-delay circuitry in the IRU, comprised of
excitatory or inhibitory synapses. We discuss general fea-
tures of the time-delay circuit made up of either excitatory or
inhibitory synapses. We then proceed to develop two neural
circuits for the full ISI reading unit made up of the SSU, the
time-delay circuitry comprised of either excitatory synapses
or the inhibitory synapses [13] and the detection unit, which
is the output of the IRU.

Next we address the issue of training the IRU using syn-
aptic plasticity rules. We specifically discuss STDP of exci-
tatory synapses (eSTDP) [15,16] in the context of training
the IRU consisting of the time-delay circuitry made up of
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excitatory synapses and STDP of inhibitory synapses
(iSTDP) [14] in the context of the IRU consisting of the
time-delay circuitry made up of inhibitory synapses. We
show how the IRU can be trained through STDP and how it
can be subsequently used to recognize a specific ISI se-
quence on which it has been trained. Recognition is imple-
mented here through a detection unit that fires an action po-
tential when two input spikes arrive within a short temporal
window and responds with a subthreshold activity otherwise.
The interaural time difference circuit noted above also uses
this kind of coincidence detection to relay information to
other neural processes on detection of an appropriate time
delay.

The overall IRU circuit comprising a time-delay unit, a
spike selection unit, and a detection unit, thus operates by
producing a replica of the given ISI sequence. It then uses
synaptic plasticity to adjust the delay produced by the time-
delay subcircuit to match the ISI in the input sequences to
within a chosen resolution threshold of a few msec. Success
in this matching is seen in the spiking activity of the detec-
tion circuit. The IRU circuit is thus a candidate for how
biological networks can accurately select particular environ-
mental signals, potentially usable for further processing for
decision making and required functionality, by keying on the
representation of environmental signals as a specific spike
sequence.

We have also explored the generality of the scheme of
spike pattern recognition by an IRU by modeling the IRU
circuitry with a simplified phenomenological neuron model
using quadratic integrate and fire neurons, retaining the same
structure for synaptic currents. While, of course, the results
are different in detail, the overall results are essentially the
same as when we use HH neuron models. In a sense this is
not surprising as the HH models were chosen not to emulate
any particular biological neurons but to indicate that conduc-
tance based spiking neurons could comprise time-delay units
of the form seen in the birdsong circuitry. In this paper we
only report results from the IRU constructed with HH type
neuron models.

The paper is organized as follows: In Sec. II we begin
with the description of the mathematical model for the neu-
rons and the synapses that make up various circuit elements
of the IRU. We then present the empirical STDP rules for
excitatory and inhibitory synapses used in this work to tune
the IRU such that it can selectively respond to the input ISI
sequence. In Sec. III, we begin with the description of a
general architecture of the IRU circuitry for spike pattern
recognition. We then describe neural circuitry for all the es-
sential components of the IRU, beginning with a particular
implementation of the spike selection unit. We then describe
the circuitry for time delay using excitatory and inhibitory
synapses. We then develop the entire IRU circuitry and show
how it can be trained to recognize an input ISI sequence
using STDP.

II. METHODS

The IRU circuitry described in this work is comprised of
two neuron models, namely, (1) a type I neuron and (2) a
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bistable neuron. Each neuron model is described in the
Hodgkin Huxley framework of a single compartment model
and each exhibits a distinct dynamical property in terms of
bifurcation from resting state to spiking state as a function of
the input current. We also consider three types of synapses in
the development of the IRU circuitry. They are (1) excitatory
AMPA synapses, (2) excitatory NMDA synapses, and (3)
inhibitory GABA, synapses. The mathematical models for
the two neurons and the three synapses are presented below.

A. Neuron models
1. Type I neuron model

We model a type I neuron [30] based on the Hodgkin
Huxley framework as a single compartment model with a
fast sodium channel, a delayed rectifier potassium channel,
and a leak channel. The transition from the resting state to
the spiking state in this neuron model occurs through a
saddle node bifurcation on the invariant circle [31,32]. The
frequency of spiking as a function of input dc current /,. can
be given in the form

f=C\ly I, (1)

where [ is threshold for spiking and the constant C is a
function of the model parameters. The dynamical equation
for the membrane potential for this model neuron is given by

Cd‘;_it) =L+ gna (Dh(1) (Exy — V(1)) + gxn* (D (Ex — V(1))

+8r(EL = V(1) + I5(0). (2)

C=1 uF/cm?. V() is the membrane potential, I,.: external
dc current drive, is set such that the neuron spikes at an
intrinsic frequency f, given in Eq. (1). I4(z) is the synaptic
current. E, (r=Na,K, L) are reversal potentials of the sodium
and potassium ion channels and the leak channel, respec-
tively. g, (r=Na,K,L) represent the conductance of sodium,
potassium, and the leak channel, respectively. All the param-
eters for the neuron model are summarized in Table 1.

The gating variables X={m,h,n} satisfy the first order
Kinetic  equation: %Q=aX(V(t))(1 =X(1)) - Bx(V(£)X(2),
where ay and By are given below with V;,=—65 mV.

~0.32(13 = (V(1) = Vi) _ 0.28((V(1) = Vi) —40)

Qa,

m= o G(B3=(V()-Vp))A0 _ 1 m= o (VO)-Vi)-40/5 _ 1
— O 128 |7—(V(f)—Vlh)/18 — 4 _
ap=U.120¢ . Bi= A-VO-Ve)i5 17
0.032(15 = (V(¢) = V) 0.5
@y, = 15=(VO-Ve)is _ 1 n = o (V(D-Viyp)=10/40°

2. Bistable neuron model

We model the bistable neuron in the Hodgkin Huxley
framework as a single compartment model with a persistent
sodium channel, a fast potassium channel, and the leak cur-
rent. The transition from the resting state to the spiking state
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TABLE I. Model parameters used in all calculations, unless oth-
erwise mentioned in the figure caption.

Type I neuron model ExNa 50 mV
Ex -95 mV
E; -64 mV
gNa 215 mS/cm?
8K 43 mS/cm?
g 0.813 mS/cm?

Bistable neuron model Ena 60 mV
Ex -90 mV
E; -80 mV
2Na 20 mS/cm?
K 10 mS/cm?
gr 8 mS/cm?
Vin -20 mV
Va -25 mV
ki, 15 mV
k, 5 mV
T, 0.16 mV

in this model occurs through a saddle node off-invariant
circle, bifurcation [32]. As a result there is a coexistence of a
stable resting state (fixed point) and a stable spiking state
(limit cycle) just before the bifurcation and either an excita-
tory and inhibitory input pulse can result in transition of the
dynamics between the stable resting and the stable spiking
states [32]. The dynamical equation for the membrane poten-
tial for this model neuron is given by

CdVB(f)

d = gnaMee(V(1)) (Eng — V(1)) + ggn(t) (Eg — V(1))

+ 81 (EL— V(1) + Is(1) + 1.1, (3)

C=1 uF/cm?. Vg(r) is the membrane potential of the
bistable neuron, I,.;, external dc current drive. I4(7) is the
synaptic current. E, (r=Na,K,L) are reversal potentials of
the sodium and potassium ion channels and the leak channel,
respectively. g, (r=Na,K,L) represent the conductance of
sodium, potassium, and the leak channel, respectively. Again
all the parameters for the neuron model are summarized in
Table I.

The gating variable n(r) satisfies the following first order
kinetic equation:

dn(t) _ n.(V(1)) - n(t)
dr T, '

The activation functions X..(V)={m..(V),n.(V)} depend on
voltage V as

Xo(V) = 1/(1 + exp((Vy = V)/kyx)),

where Vy and ky are the parameters of the activation func-
tion, given in Table I.

B. Synapse model

The synaptic currents are given as
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(1) Excitatory AMPA synapse: I(f)=g,SE(t)(Ex-V(2)),
where g, is the synaptic conductance, Ex=0 mV is the rever-
sal potential for an excitatory synapse, and SZ(¢) is the gating
variable, which determines the fraction of bound glutamate
neurotransmitters relative to the maximum neurotransmitters
that can be bound, 0<Sf(r) <.

(2) Excitatory NMDA synapse: I(1)=g,B(V(t))SE(t)(Eg
—V(1)), where g, is the synaptic conductance and B(V)
=1.0/(1+0.288 exp(-0.062V)). E; and SE(¢) represent the
same quantities as described above, however, time constants
for the AMPA SE(¢) and the NMDA S%(¢) are quite different
as described below.

(3) Inhibitory GABA, synapse: Is(t)=ggSI(t)(E1— V(1)),
where g, is the synaptic conductance, E;=—75 mV is the
reversal potential of inhibitory synapse, and S() is the gat-
ing variable, which determines the fraction of bound GABA,
neurotransmitters relative to the maximum neurotransmitters
that can be bound, 0=<S/()<1.

The SY(¢) (Y={E.I}) satisfy the following first order ki-
netic equation:

ds™ (1) _ So(6(r)) - §™(1)
dt #HS) = So(6(1))”

where 0(1)=2,0(t—1,)O((t;+ 7z)—1). O(X) is the Heaviside
function satisfying ®(X)=1 if X>0 else O(X)=0 and ¢; is
the time of the ith presynaptic neuronal spike. The kinetic
equation for S¥(f) involves two time constants: 7,=#(S,—1),
the docking time for the neurotransmitter and 7,=75,, the
undocking time constant for the neurotransmitter binding.
The characteristic time scales for an AMPA synapse are cho-
sen such that 7,=0.1 ms and 7p,=1.5 ms. For the slow
NMDA synapse the time scales are 7=2.5ms and 7p
=70 ms. For the inhibitory GABA, synapse the time scales
are 7p=1.1 ms and 7,=5.5 ms. Finally, S,(6) is the sigmoi-
dal function given by S,(6)=0.5(1+tanh(120(6-0.1))).

C. STDP

1. eSTDP

We consider a generic form of eSTDP [15,16,33,34]. The
synaptic modification arising from a single pair of pre- or
postsynaptic spikes is given through function Ag(A¢), given
by [35]

n n
yapap YapQp

A= B ey A0
p+ 1Nbp nbp+ Pp
7 n
= YEPAD  yppar_ YADAP ppar e pp <))
Br+ 1B Br+ Pp
4)

where At=t,,,~1t,, is the time difference between a postsyn-
aptic spike at 7,,,, and a presynaptic spike at time 7,,,. In Fig.
1(a) we show the eSTDP rule fit with a function given in Eq.

or  parameters ., y=10"°  a,=ap=335,
4) A p [35] y=107° »,=ap=33.5
Bp=0.098 ms™!, B,=0.035 ms~!, and n=4.

2. iSTDP

A spike timing dependent plasticity rule for inhibitory
synapses (iISTDP) has been recently reported in [14] and an
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FIG. 1. STDP rules. (a) STDP of excitatory synapse. The pa-
rameter values for the learning rule described through Eq. (4) are
y=10, a,=ap=33.5, B,=0.098 ms~!, Bp=0.035 ms~!, and
n=4. (b) STDP of inhibitory synapse. The parameter values for the
learning rule as described through Eq. (5) are =1 and B=10.

empirical fit to the observed experimental data was obtained
with the following functional form:

50 A AP el (5)

norm

Ag(Ar) =

where At=t1,,,~1,,. g is a scaling factor accounting for the
amount of change in inhibitory conductance induced by the
synaptic plasticity rule. g,,,.,=B¢~? is a normalizing con-
stant. With parameter values a=1 and =10, we obtain a
window of =20 ms over which the efficacy of synaptic plas-
ticity is nonzero. In Fig. 1(b), we show the iSTDP rule fit
with a function given in Eq. (5). We plot Ag(Ar)/g, as a
function of Az for the parameter values a=1 and B=10.

III. RESULTS

Given an input sequence of spikes at times
{ty,t1,t5,...,1,}, encoding a stimulus signal in the ISIs:
Ti=ti—t; (i=1,2,...,n—1), we describe a general frame-
work for a neuronal circuit comprised of a network of neu-
rons interacting through synaptic connections that is capable
of decoding the information about the stimulus embedded in
the sequence of ISIs. We define “decoding” as the ability of
the neural circuit to respond to the incoming ISI sequence
that encodes the information about the stimulus and produces
no response to any other input ISI sequence. In Fig. 2 we
show the schematic diagram of such neural circuitry and we
refer to it as IRU.

In order to understand the principle behind the IRU ability
to recognize a given ISI sequence that encodes the stimulus
information, we consider an input spike sequence comprised
of two spikes at times {¢,,,+ T}. The input arrives to the IRU
at the SSU, whose function it is to selectively distribute input
spikes to downstream components in the IRU. Specifically,
as we see from Fig. 2 the SSU feeds the input spike at time
ty, to the “time-delay unit” (TDU) and the spike at time
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Input
{to,to + T}

IRU y

Spike Selection

to
Y

Time Delay with STDP
Learning

to+T

v to + T(R)

- ISI Detection
|T —7(R)| < ¢

A

Output
— Synaptic input

FIG. 2. Schematic diagram of the IRU neural circuitry. It con-
sists of three essential components, namely, (1) the SSU, (2) the
tunable TDU, which can be tuned through the tunable parameter R
that can be modulated by STDP, and (3) a DU. Input to the IRU is
a spike sequence S={ty,7,+7} and the output from the IRU, for the
correct tuning parameter R is a single spike corresponding to the
recognition of the input ISI, 7, implying that the IRU has decoded
the information contained in the ISI of length 7" ms.

to+T to the “detection unit” (DU). The TDU reads the input
spike and emits an output spike at time #,+ 7(R), where R is
the tunable parameter of the TDU. The two spikes at times
to+T and ty+ 7(R) arrive at the DU, which acts as a coinci-
dence detector and responds to the incoming spikes depend-
ing on the time difference |7—7(R)|. If |T— 7(R)| > &, where &
is the resolution of spike pair detection by the DU, STDP
modulates the synaptic strength of the synapses in the IRU,
specifically the tuning parameter R within the TDU, so that
|T-HR)|— 6. The IRU is considered trained when |T
—m(R)| =< & such that the DU responds with an output spike
and the tuned parameter R of the IRU has evolved to a final
steady state value. Subsequent presentation of the spike se-
quence will then successfully elicit an output spike from the
IRU implying its ability to “decode” the information embed-
ded in the input ISI sequence. This process is a nonlinear
dynamical system of the form of an iterated map: R,
—R,.1=f(R,), where f(R) is the action of the IRU on the
presentation of n=1,2,... ISIs. We seek a stable fixed point
of this map interpreted in terms of the ability of the IRU to
“decode” the information in the input ISI sequence.

We now describe in detail each circuit within the IRU,
made up of biologically realistic neuron models and synaptic
connections, and explain how the IRU can utilize STDP to
train itself to respond to the correct temporal sequence of
input spikes.
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to 1
S S

—— Excitatory AMPA synapse
——e Inhibitory GABAA synapse

FIG. 3. SSU. The SSU performs the task of selectively distrib-
uting the spikes in the input interspike interval sequence to the
downstream IRU components. Input to the SSU is the spike se-
quence S={ry,t;,...} and the output is a single spike from neural
units «; at times #; corresponding to spike times in the sequence S.
In the example shown the input to the SSU is S, which represents a
pair of spikes at times {fy,#;} and the output is a single spike from
a neural unit « at time #; and another spike output from neural unit
a; at time #;. The conductance of the excitatory synapses g.g
=1 mS/cm?, the inhibitory GABA,, synapses gg,=70 mS/cm?, and
8py="1 mS/cm?.

A. SSU and the DU

In Fig. 3 we show the schematic of the spike selection
unit (SSU). The primary purpose of this circuitry is to split
incoming spikes and distribute them appropriately to the
downstream components of the IRU circuitry to be used in
the IRU training and later for the task of spike pattern rec-
ognition. Neural units B, and 7, of the SSU are bistable
neurons (Sec. IT A 2). Absent any input to the SSU, neurons
v, are in the stable spiking state and neurons S, are in the
stable resting state. Neurons ¢, of the SSU are type I HH
neurons (Sec. II A 1) and are at a stable resting state. The
conductance of the excitatory AMPA synapse from neurons
a— in the SSU are g,5=1 mS/cm? (g, represents the syn-
apse from neuron i to neuron j). The conductance of inhibi-
tory GABA-A synapses from neurons S— « and S8— vy are
8pa=T0 mS/cm? and g By=1 mS/cm?, respectively.

In general SSU can select spikes from a sequence of
spikes at times {,,7,,...,ty}. Here we concentrate on N=2
to illustrate the operation of the SSU without any loss of
generality. For the case N=2 input to the SSU is the spike
sequence S={t,,7;=1y+ T}, where T is the interspike interval.
When the first input spike at time 7, arrives at neuron c, it
responds and the SSU emits an output spike at time #,. The
activity of neuron « excites neuron S, and the excitatory
drive through an AMPA synapse from neuron a; to neuron
By pushes the neuron into its bistable spiking state. The spik-
ing neuron S, now inhibits neuron « through an inhibitory
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FIG. 4. Response of the DU to two incoming spikes. (a) The DU
responds with an output spike when it receives two input spikes
within =<4 ms. The output spike occurs about 15 ms later, corre-
sponding to the integration time scale of the neuronal dynamics.
The two incoming spikes are represented as rectangular pulses
shown in the figure, scaled appropriately for visualization. (b) The
DU responds with a subthreshold excitatory postsynaptic potential,
in response to two input spikes arriving at the DU with a delay
6>4 ms. The model parameters are I,=0.99 mA/cm’> and
8in=0.05 mS/cm>.

GABA-A synapse and a( no longer responds to any further
input spikes. B, also inhibits neuron y; moving it from its
bistable spiking state to the stable resting state. Until this
point in time, neuron ¥, is inhibiting neuron «;. The quieting
of vy, allows «; to respond to spikes in § at #; producing an
output spike at time #;. Neuron (B, is now excited into a
stable oscillating state and it inhibits a;; and y,. @; no longer
responds to any further spikes in the sequence S. Not shown
in Fig. 3 is the final step in the SSU implementation whereby
all neurons S, are returned to rest and all neurons v, are
returned to their stable oscillating state, which represents the
initial dynamical configuration of the SSU. This can be ac-
complished by a global inhibition of 8, and excitation of 7,
after S has stimulated output spikes from all neurons «,,.
The detection unit (DU) is implemented in the IRU in the
form of a single type I HH neuron which acts as an integrator
and responds with an output spike in response to two input
spikes, through an AMPA excitatory synapse (synaptic con-
ductance g;,) arriving within & msec. For the parameters of
the DU circuitry (1,=0.99 mA/cm?, g;,=0.05 mS/cm?)
considered in Fig. 4, 6=4 ms. In Fig. 4(b), we show the
response of the DU when it receives two input spikes 5 ms
apart. The total integrated current entering the DU at the
given interval of 5 ms between the two incoming spikes is
not sufficient to push the neuron beyond its spiking threshold
and the neuron responds with a subthreshold excitatory
postsynaptic potential. As shown in Fig. 4(a) when the input
spikes are sufficiently close in time <4 ms, the total inte-
grated input is sufficient to push the neuron above its spiking
threshold. It now responds with an output spike after a delay
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FIG. 5. One neuron TDU. In the inset of (b) we show the sche-
matic diagram of a single neuron TDU, made up of a type | HH
neuron. It receives input current I¢(f)=R[O(t—1y)— OV(t)— V)]
starting at time #,. Depending on the strength of input current pa-
rameter R, the neuron responds with a spike output at time #;=t,
+7(R). (a) We show (solid line) the membrane potential of the
single neuron TDU when R=0.93. In this case the neuron responds
with a delay of 7(R)=62.5 ms. The dotted line represents the input
current Ig(¢) to the neuron. (b) We plot the variation in the delay
7(R) produced by the neuron as a function of the parameter R. The
model parameters are I,.=1.0 mA/cm?.

of about 15 ms. The DU thus acts as a coincidence detector
producing a response spike if it receives two simultaneous
spike inputs (within §=4 msec).

B. TDU

We present two distinct architectures for the TDU cir-
cuitry comprised of tunable excitatory and inhibitory syn-
apses, respectively. The essential function of the TDU is to
read an input spike at time 7, and respond with an output
spike after a time 7,+ 7(R), where R is the tunable parameter
of the TDU which can be modulated through STDP.

1. Concept of a TDU

We begin with the description of the simplest time-delay
circuitry comprised of a single type I HH neuron. This is
shown schematically in the inset of Fig. 5(b). The input to
the neuron is the current I(r)=R[O(t—1))—OV(t)-V,)],
where ©(x)=0 when x<0 and ®(x)=1 when x>0. ¢, is the
time of the input spike to the neuron. The parameter I, [Eq.
(2)] is set at 1.0 mS/cm?, resulting in the resting potential of
the neuron E,,,~-62 mV. V,, is the threshold for detecting
action potential and is set to O mV. The spike output from
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the neuron occurs at time #; when the membrane voltage
exceeds V. The time delay of the output spike is then,
7(R)=t,—t,. The input current /¢(¢) turns on a constant cur-
rent R at time #;, and the membrane voltage of the neuron
integrated through the HH dynamics [Eq. (2)], increases until
the voltage rises above V,;, and a spike appears at time #,. At
t; the current I4(7) is turned off.

Using this type I neuron model, with step input current
until a spike output is generated from the TDU, we can con-
struct a TDU to obtain various time delays as a function of
the strength of R. In Fig. 5(a) we show a sample trace of the
output from the single neuron delay unit for R =0.93 leading
to 7(R) = 62.5 msec.

In Fig. 5(b) we show the delay ®R) as a function of R
from this one neuron model. We note that for R=0, the TDU
will not receive any input current and will therefore never
produce an output spike, resulting in 7{R=0)— . For very
large R we expect 7(R) — 0, since the neuron receives a very
high input current to drive it to spiking threshold rapidly. The
one neuron model does not involve any synapses, so synaptic
plasticity cannot be used to train the time delay to a desired
value. Further, though the neuron is a biologically realistic
HH model neuron, the circuit requires a step current input
which is not.

2. TDU with excitatory synapses

Building on the idea underlying the construction of a
single neuron TDU, we construct a two neuron model of the
TDU that is biologically feasible. The inset of Fig. 6(b)
shows the schematic diagram of the two neuron TDU. Neu-
ron B is a bistable neuron, in resting state. It synapses onto
neuron «, a type I neuron, through an excitatory NMDA
synapse. « in turn synapses onto B through an inhibitory
GABA-A synapse. The input spike arrives into neuron [ at
time ¢, through an excitatory AMPA synapse and at the same
time into neuron « through a tunable excitatory NMDA syn-
apse with synaptic strength gg=Rgg, (g5o=1 mS/cm?). The
output of the TDU is from neuron « at time #; at time delay
of 7(R)=t,—1,. The time delay 7(R) can be modulated by
changing the synaptic strength gg, through the tunable pa-
rameter R. A single input spike at time #; drives § into its
stable spiking state providing enough depolarizing current to
neuron « until it fires at time 7. In order for the spiking
neuron S to provide enough depolarization for neuron « to
eventually fire, the firing frequency of neuron B should be
greater than the inverse decay time of the excitatory synaptic
connection from 3 to «. This is achieved by using a slow
NMDA type excitatory synaptic connection from neuron 3 to
a. A spike from neuron « at time ,=f,+ 7(R) then provides
a hyperpolarizing input to neuron £ and sets it back into its
rest state. Depending on the synaptic strength gg, neuron « is
pushed closer to spiking threshold sooner thereby allowing
the modulation of the time delay produced by the TDU.

In Fig. 6(a) we show a sample trace of the output from the
TDU through neuron « (in black), the input to the TDU at
time f, (a scaled input pulse, shown by a black dotted line),
and the activity of the bistable neuron B (shown in red) as a
function of time. In this particular example the delay ob-
served is around 134.5 msec. In Fig. 6(b) we show a plot of
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FIG. 6. (Color online) TDU with an excitatory synapse. In the
inset of (b) we show the schematic diagram of the TDU with exci-
tatory synapse. It receives input at time #, through an excitatory
synapse with strength gg=Rgg,. Depending on the excitatory syn-
aptic strength R, the TDU responds with a spike output at time #;
=19+ 7(R). (a) We show the membrane potential of the two neurons
in the TDU, neuron « (solid-black line) and neuron B (dotted red-
line) and a rectangular pulse (scaled for visualization) correspond-
ing to input received by the TDU at time 7, when R=1.0. In this
case the neuron responds with a delay of 7(R)=134.5 ms. (b) We
plot the variation in the delay 7(R) produced by the TDU as a
function of the parameter R. The strength of excitatory NMDA
synapse gg,=3.5 mS/ cm?, the excitatory AMPA synapse onto the
bistable neuron g,=0.1 mS/cm?, and the inhibitory GABA, syn-
apse g,5=0.5 mS/cm?. The dc currents, 7,,=0.5 mA/cm® and
I;e1=4.0 mA/cm?.

the time delay of this model 7(R). This dependence of 7(R)
on a synaptic strength gg=Rggq, through the tunable param-
eter R is typical for excitatory synapses. As the excitation
increases, the time to produce a delgsj,d spike output de-
creases. This monotonic decreasing (d dlf < 0) relation of the
time delay produced by the TDU with excitatory synapses in
conjunction with eSTDP [Eq. (4)] results in a stable learning
mechanism by which the IRU can train itself to recognize a
temporal sequence of the input spike train, as will be shown
in Sec. I C.

3. TDU with inhibitory synapses

The TDU with inhibitory synapses is motivated by and
abstracted from the AFP in the songbird brain. This particu-
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FIG. 7. (Color online) Two neuron time-delay unit with an inhibitory synapse. In the inset of (b) we show the schematic diagram of the
TDU with inhibitory synapse. It receives input at time 7, through an inhibitory synapse. Depending on the excitatory synaptic strength R of
the synapse from a— 3, the TDU responds with a spike output at time ¢, =7+ 7(R). (a) We show the membrane potential of the two neurons
in the TDU, neuron « (red) and neuron B (black) and an input rectangular pulse (scaled for visualization) corresponding to input received
by the TDU at time 7, when R=0.5. In this case the neuron responds with a delay of 7(R)=134.5 ms. (b) We plot the variation in the delay
7(R) produced by the TDU as a function of the parameter R. (c) We plot the variation of 7(R) as a function of &, the relative time of the input
spike arriving into a with respect to the oscillation period of spiking for «, when R=0.5. The dc currents I =1.94 mS/ cm?,
1% =1.93 mS/cm?. The strength of inhibitory GABA, synapse g;=50 mS/cm?.

lar architecture of the TDU and its utility in spike pattern
recognition was summarized in [13]. In this section we ex-
plore in detail the abstraction of the TDU with inhibitory
synapses from the songbird AFP.

We begin by constructing a simple two neuron time-delay
circuit with inhibitory synapse as shown in Fig. 7(b) (inset).
This two neuron time-delay circuit is composed of an oscil-
lating neuron «, which projects synaptic inhibition to another
neuron B, which under the influence of this inhibition re-
mains below spiking threshold. In the absence of spike input
to neuron «, neuron S never produces a spike output. When
a spike arrives at « at time f, through an inhibitory input
synapse, «’s oscillation is turned off releasing inhibition on
neuron B and it responds with a spike output at time f,
+7(R). Neuron B can respond with varying time delay 7(R),
dependent on the strength of inhibition g¢=Rgg, (gs0
=1 mS/cm?) from a— B. Both neuron « and neuron 8 are
represented by a type I HH neuron model [Eq. (2)]. The
strength of the dc current in neuron a, I5,=1.94 mS/cm? In

the absence of any other synaptic input, neuron « oscillates
with an intrinsic period 7'~ 30 msec.

In Fig. 7(a), we show a sample trace for the membrane
voltage of neurons, « and (3 in response to a spike received
by «a at time 7,=520 ms (shown by a dotted black line) when
R=0.5. In this case neuron S responds with a spike output at
time 7y+7(R) with 7(R)=58.4 msec. In Fig. 7(b), we plot
7(R) as a function of the tunable parameter R, when the input
spike arrives at neuron « at time #,=520 msec.

For this configuration of the time-delay circuit, the output
spike produced by neuron B at time fy+7(R) for a given
strength of inhibition g¢=Rgs,, depends on the relative tim-
ing of the input spike arriving at neuron « at time f, with
respect to the oscillation period of «a. If we denote T as the
time of the last spike from neuron « before the arrival of the
input pulse into the TDU at time f,, such that 7, <t,, then the
relative timing of the arrival of the input pulse is given by
ot=ty—T;. The dependence of the delayed output spike from
B as a function of & is shown in Fig. 7(c). We see that the
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time of the output spike from the time-delay unit in this
configuration not only depends on the strength of tunable
parameter R [Fig. 7(b)], but also depends on the timing of the
arrival of the input spike into neuron « at time 7, relative to
the period of oscillation of « [Fig. 7(c)]. Thus for given R,
the timing of the delayed spike output from the TDU varies
over the period of oscillation of neuron «, which is not a
desirable outcome for the TDU in its utility for the construc-
tion of the IRU circuitry.

4. Three neuron TDU with inhibitory synapses

We modify the simple two neuron time-delay circuit de-
scribed above to a three neuron model with a tunable inhibi-
tory synapse, such that the output of the circuit is dependent
only on the strength of synaptic inhibition and is independent
of the relative timing of the arrival of the input pulse. The
modified three neuron time-delay circuit, shown in Fig. 8(b),
is abstracted from the observed anatomical structure of the
AFP in the brain of songbirds as shown in Fig. 8 [28,29].

The AFP of songbirds is comprised of three nuclei: area
X, DLM, and lateral part of the magnocellular nucleus of the
anterior neostratum (LMAN), as shown in Fig. 8(a), each
having a few times 10 000 neurons [36,37]. The input to the
AFP is via a sparse burst of spikes from nucleus HVC enter-
ing area X. The output signal of the AFP is from LMAN
leaving the AFP to innervate the RA nucleus. Within area X
two distinct neuron types, spiny neurons (SN) and aspiny
fast firing (AF) neurons, receive direct innervation from
HVC [28,38]. In the absence of signals from HVC the SNs
are at rest while the AF neurons are oscillating at about
20-25 Hz. The SNs inhibit the AF neurons, and these in turn
inhibit neurons in DLM, a thalamic nucleus in the AFP [39].
The DLM neurons receiving this input from area X are
driven by the inhibition received from AF below the thresh-
old for action potential production and do not produce action
potentials while the AF neuron oscillates. When the AF
— DLM inhibition is released, the DLM neurons rebound
and fire periodic action potentials. These propagate to
LMAN and are then transmitted to RA. The time around this
path is observed to differ from the direct HVC — RA inner-
vation by 50 = 10 ms [26,27].

In our model for the AFP circuitry [27], treating each
nucleus as a coherent action potential generating device, we
found that LMAN played an unessential role in determining
the time delay around the AFP while the strength of the
AF— DLM inhibition could tune the time delay over a range
of 10—-100 ms.

From these observations and motivated by the simple two
neuron construction of the time-delay circuit we have con-
structed a biologically feasible time-delay circuit comprised
of three neural units and two inhibitory synapses with a tun-
able synaptic strength. The time-delay circuit is displayed in
Fig. 8(b). Neuron « (similar to the SN in area X) receives an
excitatory input signal from some source. It is at rest when
the source is quiet and when activated, it inhibits neuron
(similar to the AF neuron in area X). Neuron f receives an
excitatory input from the same source and it oscillates peri-
odically when there is no input from the source. Neuron
inhibits neuron 7 (similar to a DLM neuron). Neuron y pro-
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FIG. 8. (Color online) Schematic diagram of the three neuron
time-delay unit used in the IRU circuit. This is abstracted from a
time-delay network in the AFP of the birdsong system as shown in
red in the schematic diagram at the top of the figure. The diagram
shows the AFP loop (area X, DLM, and IMAN) from the birdsong
system that suggested our three neuron time-delay unit. Unit A is
abstracted from the area X SN neurons, unit B is abstracted from the
area X AF neurons, and unit C is abstracted from the thalamic
excitatory neurons in DLM. Absent any input spikes, neuron A is at
rest, neuron B oscillates periodically, and neuron C oscillates
around its rest potential driven by periodic inhibitory input from
neuron B. When an input spike arrives at neuron A and at neuron B
at time #(, neuron A fires an action potential and neuron B has the
phase of its oscillation reset to be in synchrony with the time of
arrival 1, of the spike. The action potential in neuron A inhibits
neuron B, and this releases neuron C to rise to its spiking threshold
a time 7(R) later. R is the dimensionless scale of the B— C inhibi-
tion. Within a broad range for R, neuron C will fire a single spike at
a time 7o+ 7(R). The value of the conductance for the B— C inhibi-
tory synapse is g;=Rgjy, With g, a baseline conductance.

duces periodic spiking in the absence of inhibition from neu-
ron . The tunable synapse is the inhibitory synapse from
neuron f3 to neuron a.

Each of the neurons «, B, and v is represented by a type
I HH neuron with sodium, potassium, and leak currents as
well as an injected dc current to set the spiking threshold
[Eq. (2)]. A more detailed neuron model for neuron 7y could
include hyperpolarization activated I, channels and low
threshold calcium /; channels, which facilitate post inhibi-
tory rebound spikes [27]. Indeed, in the DLM neuron of the
birdsong AFP this mechanism leads to calcium spikes as the
output of neuron 7.

When the inhibition from neuron B to neuron vy is re-
leased as a result of an inhibitory signal from neuron « onto
neuron f3, neuron 7y rebounds and produces an action poten-
tial some time later. This is due to the intrinsic stable spiking
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state of neuron vy in the absence of any inhibition from neu-
ron . The time delay for neuron 7y to produce a spike is
dependent on the strength of the S— 7 inhibition g;=Rgj
(g0=1 mS/cm?). The stronger the inhibition g; onto neuron
v, its membrane potential driven is further below threshold
and as a result, the longer is the duration required for the
membrane voltage to reach the threshold for action potential
generation. This means the larger the S— 7 inhibition, the
longer the time delay produced by the circuit. Other param-
eters in the circuit, such as the membrane time constants, set
the scale of the overall time delay that can be produced by
the circuitry.

The direct excitation of neuron 3 by the signal source is
critical. It serves to reset the phase of the neuron S oscilla-
tion, as a result of which the time of the spike from neuron 7y
is measured with respect to the input signal and thus makes
the timing of the circuit precise relative to the arrival of the
initiating spike. Without this excitation to neuron g, the
phase of its oscillation is uncorrelated with the arrival time
of the signal from the source, and the time delay of the
circuit varies over the period of oscillation of neuron B as
was the case with two neuron construction of the TDU with
inhibitory synapses. This is not a desirable outcome, nor is it
the way the AFP circuit appears to work [28].

For the conductance values g,z=50 mS/ cm?, 8py=8s
=Rgg, With ggo=1 mS/cm? and R=0.05 and excitatory in-
puts at neuron « and B, g,=g3=0.5 mS/cm?, and I3,
=1 mA/cm?, resulting in E% ~-62 mV, I =1.94 mS/cm?,
and I7,=1.93 mS/ cm? we find the delay produced by the
TDU, 7(R)=~=54.5 msec, as shown in Fig. 9(b). For R too
small, R<0.019 in Fig. 9(b), the inhibition from B8— « does
not prevent production of action potentials through the de-
fault spiking state of neuron 7 in the absence of inhibition.
For R too large, R=0.77 in Fig. 9(b), the neuron 1y is inhib-
ited so strongly it never spikes. Over the range of 0.019
<R=<0.77 we typically find 7(R) ranges over about 20 ms
within an overall scale of about 10—100 ms, depending on
the integration time constants in Eq. (2). In Fig. 9(a), we
show the time evolution of the membrane potential from the
three neurons in the TDU when R=0.05. For this parameter
value, we see that neuron 7y responds with an output spike
after =54.5 msec. Also from Fig. 9(b) it is important to note
the monotonic increase (%R&>O) of 7(R). This form for
7(R) with iSTDP [Eq. (5)] also results in a stable spike pat-
tern learning mechanism for the IRU [13].

C. ISI reading unit: IRU

Using the neural circuitry for various components of the
ISI reading unit, we now present two schemes for the IRU
circuitry. The first utilizes a TDU with excitatory synapses
and eSTDP to train on the input spike sequence. The second
uses the TDU with inhibitory synapses and iSTDP to train on
the input spike sequence.

1. IRU with an excitatory time-delay unit

In Fig. 10 we show the schematic diagram of the IRU
built with time-delay circuitry composed of excitatory syn-
apses. In order to understand the operation of the IRU and
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FIG. 9. (Color online) (a) We show the membrane potential of
the three neurons in the TDU: neuron « (black), neuron 3 (red), and
neuron 7y (green) corresponding to input received by the TDU at
time #y when R=0.05. In this case the neuron responds with a delay
of (R)=54.5 ms. (b) We plot the variation in the delay 7(R) pro-
duced by the TDU as a function of the parameter R. The dc cur-
rents, %=1 mS/cm?, 5 =194 mS/cm?, and 15 =193 mS/cm?.
The strength of inhibitory GABA4 synapse, y,z=50 mS/cm? and
the excitatory AMPA synapses y,=g3=0.5 mS/cm?.

the mechanism of IRU training using eSTDP, we consider an
input spike sequence S={t,,7,+7T} consisting of two spikes
separated by an ISI 7. As discussed earlier, the basic idea
behind the training of the IRU is that if |T—H(R)| > &, where
6 is the resolution for spike separation for the DU to respond
with an output spike, STDP should be invoked to modulate
the synaptic parameter R such that |T—(R)|< 6.

For the IRU scheme shown in Fig. 10, the input S arrives
at the SSU and neuron A. Spike output from neuron A is fed
into neuron « of the TDU. The first spike from the SSU at
time 7, is fed into neuron S of the TDU. An additional type I
neuron vy is present in the TDU, and it serves as a relay
neuron to reliably inhibit the bistable neuron S after the TDU
has responded with an output spike at time f,+7(R). The
TDU will respond with spike at time 7,+ 7(R). The function

of the neural unit E, which is a bistable neuron, is to prevent
neuron « from responding to any spikes it receives through
neuron A after it has produced a delayed spike output at time

7(R). A spike output from neuron « excites neuron B and
moves it into its stable spiking state. It then inhibits neuron «
preventing it from responding to any further input spike it
receives through neuron A. Neuron « thus always responds
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FIG. 10. Schematic diagram of the IRU comprising of the es-
sential circuit element, the SSU, the TDU with excitatory synapse,
and the DU. IRU training occurs at the synapse from neuron A (the
presynaptic neuron) to neuron « (the postsynaptic neuron) depend-
ing on the synaptic strength g that determines the time 7(R) of the
delayed spike generated by the TDU in response to an input spike it
receives at time #,. The details of IRU training are provided in Sec.
nIcC2.

with a single spike output at time 7(R). The DU thus receives
a single spike input from the TDU at time 7(R). The second
spike from the SSU at time 7747 is fed into the DU. If the
two spikes arriving at the DU at times 7447 from the SSU
and ty+ 7(R) from the TDU are within § msec, the DU re-
sponds with an output spike, implying the IRU has “de-
coded” information embedded in ISI 7. If the arrival time of
the two spikes at DU is greater than 6 msec, the IRU must
invoke STDP to train itself on the input ISI sequence. We
now explain how the IRU scheme shown in Fig. 10 can
invoke eSTDP [Eq. (4)] at the synapse from neuron A (pr-
esynaptic neuron for STDP) to neuron « (postsynaptic neu-
ron for STDP) to drive |T—7(R)| to & or a smaller value.

2. Training an IRU with an excitatory time-delay unit

Consider training the IRU to recognize input sequence S
={ty,to+T} comprising of a single ISI T. Let the initial con-
figuration of the IRU be such that |[T—r(R)|> & and the IRU
is unable to recognize the input S and accordingly produce
no output spike through the DU. In order to train the IRU to
recognize this ISI input, we present the spike sequence S
many times N=1,2,... until [T-A7(R)|< & and the tunable
synaptic strength gp of the IRU has evolved to an asymptotic
value g . We consider the following two cases for training
the IRU to recognize the input sequence S.

In the first case, consider the initial state of the IRU such
that |7—7(R)|= & with 7(R)>T. Successful IRU training in
this case requires the synaptic strength gp to evolve with
each training iteration such that 7(R) decreases eventually
approaching within 6 ms of 7. In this case, as can be seen
from the schematic diagram for the IRU in Fig. 10, neuron «
fires a spike at time #,,,=1+7(R) (postsynaptic neuron to

PHYSICAL REVIEW E 78, 031918 (2008)

synapse from neuron A to neuron «) and the most effective
presynaptic spike from neuron A occurs at time 7, =f+7.
This implies At=t,,,—1,,=7(R)=T>0. As a result Ag(At)
>0 and the synaptic strength g increases [according to the
eSTDP rule in Eq. (5)] and leads to a corresponding decrease
in 7(R) (since ‘%R& <0) until 7(R) approaches T+ 8. The IRU
is considered trained when the DU responds with an output
spike and g has evolved to a final stable value gg corre-
sponding to Ag(Ar)=0.

The second case, when |T—7(R)|=6 with 7(R)<T is
more involved. Successful IRU training in this case requires
the synaptic strength g to evolve such that 7(R) increases
approaching 7 from the left. In this case the most effective
pre-post spike pairs for eSTDP learning are (1) presynaptic
spike from neuron A at time 7, and postsynaptic spike from
neuron « at time 7+ 7(R), corresponding to At=7(R) >0 and
(2) presynaptic spike from neuron A at time #y+7 and
postsynaptic spike from neuron « at time #y+7(R), corre-
sponding to Ar=7(R)—T<0. The effective change in synap-
tic strength per iteration of IRU training (N=1,2,...) is
given by gp(N)=gr(N=1)+AG(T,(R(N-1))), where
AG(T, 7(R))=Ag(m(R))+Ag(=|T-7(R)|). If AG(T,7(R(0)))
<0, each iteration of IRU training will decrease g corre-
sponding to an increase in 7(R) (since %R&<O) and as a
result 7(R) approaches T. However, if the initial configura-
tion of the IRU is such that AG(T, 7(R(0)))>0, then each
iteration of the IRU training will decrease 7(R) and as a
result, |T— 7(R)| further increases and the IRU cannot be suc-
cessfully trained to learn the ISI sequence. This implies that
a successful IRU training in this situation requires the initial
configuration of the IRU to be within the basin of attraction
for the stable fixed point of the empirical eSTDP rule Ag(Ar)
such that AG(T, 7(R(0))) <O0.

In Figs. 11 and 12 we show the results from training IRU
to detect ISI of T=100 ms, starting from different initial con-
figurations as discussed above. We present the spike se-
quence many times N=1,2,... to the IRU to train the time
delay to accurately reflect the input ISI sequence. The param-
eters of the emprical eSTDP rule are set such that the stable
fixed point Ar* corresponding to Ag(Ar*)=0 occurs at Ar*
=-34 (6=4 ms) corresponding to the time resolution for co-
incidence spike detection by the detection unit of the IRU.
This implies, with parameter values [35], y=107°, ap=a,
=33.5, »=4, and Bp=2p, we have ,BD=%51n(1.5)=.0338.
These parameter values for the eSTDP rule are within the
limits of observed variability of STDP [15,16]. The first case
corresponds to gz(0)=0.2 mS/cm? corresponding to m(R)
=142 ms, so that 7{R) >T. The second case corresponds to
gr(0)=1.63 mS/cm? corresponding to 7{R)=37.5 ms, so that
7(R) <T. This case corresponds to the initial configuration of
the IRU such that the IRU is trained successfully by eSTDP
to the input IST at 7=100 ms. The third case corresponds to
initial configuration of the IRU outside the basin for attrac-
tion of the stable fixed point Ar* of the empirical eSTDP
rule, with g,(0)=1.68 corresponding to 7(R)=28.95 ms. In
this situation IRU cannot be trained to respond to input ISI
T=100 ms.

As can be seen from Fig. 11, starting from two different
initial  conditions  corresponding to  cases  gg(0)
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FIG. 11. Successful IRU training. (a) Evolution of the tunable
synaptic strength gx starting from two different initial configura-
tions, as a function of the training iteration N. (b) Evolution of the
time delay 7(R) produced by the IRU starting from two different
initial configurations, as a function of the training iteration N.

=0.2 mS/cm? with 7(R(0))=142 ms such that #(R)>T, and
gr(0)=1.63 mS/cm? with A(R(0))=37.5 ms such that 7(R)
<T, with each iteration of IRU training, the synaptic
strength  gr evolves to a final stable value gp
=1.335 mS/cm? with Ag(8)=0 and the corresponding (R)
=96 msec, resulting in the IRU being successfully trained to
respond with an output spike through the DU. For the third
case when the initial configuration of the IRU is such that
7(R(0)) <T and AG(T, 7(R(0))) >0, as we can see from Fig.
12, each training iteration of the IRU results in an increase in
gr» moving 7(R) further away from the target ISI, 7, and the
IRU cannot be successfully trained upon the input spike se-
quence S. Thus we see that there exists an upper bound on
the initial strength of the synapse gy for any given input ISI
above which the IRU cannot be trained successfully. For the
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FIG. 12. Unsuccessful IRU training. (a) Evolution of the tunable
synaptic strength g as a function of the training iteration. (b) Evo-
lution of the time delay 7(R) produced by the IRU as a function of
the training iteration.
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FIG. 13. The plot of the range of values for the synaptic strength

gr<gr _ in the initial configuration of the IRU, in order for the

IRU to be able to be trained on the input spike sequence comprising
of ISI T.

case of T=100 msec, the maximum initial strength g(0)
=1.65 mS/cm?.

We next determine the maximum strength of the synapse
gr in the initial configuration of the IRU that will result in
successful IRU training for any given input ISI. For given
ISI T of the input spike sequence, we determine the set {7} of
all 7(R)<T that will result in AG(m(R),T)<0. This is the
condition on the initial configuration of the IRU for training
to recognize ISI 7 when the initial configuration of the IRU
is such that |7—7(R)|> & with T> 7(R) as discussed above.
Using Fig. 6(b), we then determine the set {g} of synaptic
strength gg, producing the time delay 7(R) for the set {7},
satisfying the condition AG(m(R),T)<0. In Fig. 13 we plot
the ngaX=max({§}) as a function T, corresponding to the
maximum value of initial strength gr(0) for the excitatory
synapse in the TDU, which will lead to successful IRU train-
ing for given input ISI 7. We see from Fig. 13 that, for given
parameters of the IRU circuitry and the eSTDP learning rule,
the minimum ISI 7 that the IRU can train itself to recognize
is =33 msec. For T<<33 msec, no initial configuration of the
IRU will result in stable IRU learning. In Fig. 14 we dem-
onstrate an example of IRU training for this particular case,
with T=30 msec, and gx(0)=0.65 mS/cm?, corresponding to

a
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5
=
w2
E 5
S e : . . .
10 30 50 70 90
b N
60T
5
z 40} _yI=30msec T+ 04
@20 r T — 59
& o
0 . . . ooy '
10 30 50 70 90

FIG. 14. Demonstration of the failure of IRU to train on the
input spike sequence comprising of ISI 7=30 ms, for which no
initial configuration of the IRU will result in stable IRU learning.
Note that although with training the IRU can detect the ISI
T=30 ms triggering detection by the DU, further training results in
the time delay 7(R) drift away from the ISI 7 and the synaptic
strength does not saturate to final stable configuration.
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FIG. 15. Schematic diagram of the interspike IRU comprising of
essential circuit elements, the SSU, the tunable TDU with inhibitory
synapses, and the DU. IRU training occurs at the synapse from
neuron B (the presynaptic neuron) to neuron 7y (the postsynaptic
neuron) within the TDU, depending on the synaptic strength g that
determines the time 7(R) of the delayed spike generated by the
TDU in response to an input spike it receives at neural units « and
B at time 7, and an input spike received by the neural unit 7y at time
to+T from the SSU. The details of IRU training are provided in Sec.
11 C 4.

initial configuration of the IRU resulting in 7(R(0))
=60 msec. As we can see, from Fig. 14, 7(R) decreases to-
wards T as a function of IRU training iteration N, until |7
—m(R)| < 8, which corresponds to the IRU response through
the DU. However, since the fixed point A*, corresponding to
Ag(Ar*)=0 is unstable, on subsequent IRU training iteration
7(R) further decreases. This is because for this case of ISI
T=30 msec, there exists no solution to AG(m(R),T=30)<0.
This case represents a situation when the IRU cannot suc-
cessfully respond to correct ISI input after training as train-
ing does not result in the synaptic strength gp to evolve to its
asymptotic value corresponding to Ag(Ar*)=0.

3. IRU with an inhibitory time-delay unit

In Fig. 15 we show the schematic diagram of the IRU
constructed using the time-delay circuitry abstracted from
the AFP of the bird brain. Note the presence of excitatory
synapse from neuron vy onto neuron S in the TDU compo-
nent of the IRU. While the presence of this additional syn-
apse was not required for the functioning of the TDU, it is
essential for the IRU circuitry as it enables the training of the
IRU through iSTDP to recognize the input spike sequence.
Again, as for the case of IRU with excitatory synapses, we
consider input sequence S={z,,7,+7} comprising of single
ISI T to demonstrate the functioning of the IRU. Input S
arrives at the SSU as shown in Fig. 15. SSU then distributes
the input spikes at time 7, to neuron « and neuron S of the
TDU. The spike from S at time #,+7 is sent by the SSU to
neuron y of the TDU and the detection unit of the IRU.
Depending on the strength of synapse g from neuron 8 onto
neuron 7, neuron 7y responds with an output spike at time
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to+7(R). Tt is then fed into the detection unit which again
acts as a coincidence detector. Depending on the relative
timing of the two spikes arriving at the DU, the DU responds
with an output spike or subthreshold excitatory postsynaptic
potential. An output spike from the DU represents the “de-
coding” of the input signal by the IRU.

If the DU of the IRU does not respond with an output
spike, implying |T—7(R)| > &, we need a mechanism to train
the IRU through its time-delay unit to adjust |T—m(R)|< &.
This is done by invoking iSTDP [14] [Eq. (5)]. We now
explain how the IRU is trained to recognize the input spike
sequence using iSTDP.

4. Training an IRU with an inhibitory time-delay unit

We again consider training the IRU on input S={f,%,
+T}. We consider the following two cases: (1) |T—7(R)|> 6,
with T< H(R) and (2) |[T-m(R)|> &, with T> 7(R).

In the first situation neuron vy of the time-delay unit in the
IRU fires a spike at time #y+7, which is earlier than the
rebound spike at 7(R) from neuron 7. Due to the presence of
the excitatory connection y— @3, firing of vy at 7o+ T excites
neuron B, which in turn inhibits neuron y and as a result
neuron 7 is prevented from producing any more spikes. The
detection unit thus receives just one spike at time 7y+7 and
does not fire.

In this case the most effective presynaptic spike contribu-
tion to the iISTDP learning rule at the inhibitory synapse from
neuron B onto neuron vy is the next spike produced by S as it
resumes its oscillations after it responds to the input spike
through vy at time 77+7. This occurs at time t,+7+1tz with
tg>0. This is greater than fy+7(R) when neuron y would
have fired had there not been an input spike at 7y+7 <t
+7(R). The iSTDP rule applied to synapse from B— 7y thus
sees At=(ry+T)—(to+T+1tg) <0. This leads to a decrease in
gr and as shown in Fig. 9(b), a decrease in 7(R) (since
%R& >0). The decrease in 7(R) continues until |7—7(R)]
=< ¢ and the DU receives two spikes within  msec, to re-
spond with an output spike and the synaptic strength has
evolved to a final asymptotic value.

In the second situation, when 7> #(R) and |T—m(R)|> 4,
the learning rule must be invoked to increase 7(R). Neuron y
produces a spike at time #,+7(R) resulting in a spike re-
sponse in neuron B3 at time 7+ 7(R)+ €, where € corresponds
to the synaptic delay, which is due to the excitatory feedback
from neuron 7y onto neuron B. This excitation of neuron 3 is
presynaptic to the S— vy inhibitory coupling and is identified
with 7,,, in the STDP rule. Neuron 7y again receives excita-
tory input at time fy+7. This is postsynaptic to the S— 7y
inhibitory coupling and we set t,,,=t)+7 so that At=T
—7(R). This combination of spiking activity in neurons 8 and
vy results in an increase in the 8— vy inhibitory synaptic con-
nection gg. Since %R& >0, 7(R) increases, approaching T
from below. This learning process continues until |7—7(R)|
< § when the detection unit fires and again gz reaches a final
steady state value.

The IRU is trained as presented above by invoking the
iSTDP training rule as follows:
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& aPAr AP exp(-

norm j

Agg= (6)

with g,=0.01 and g,,,,,,= /8¢ P. The parameters a=0.54, 3
=3.0 when At>0 and «a=0.25, 8=5.0 when Ar<0. Al-
though the choice of these parameter values differ from the
symmetric iSTDP learning rule shown in Fig. 1(b), the es-
sential properties of the iSTDP rule are preserved, i.e.,
Ag(Ar)>0 for Ar>0, Ag(Ar)<0 for Ar<0, and Ag(Ar)
=~ 0 for Ar=0 and for the chosen values for the learning rule
the IRU can be trained over the entire range of 7(R) values
that can be generated by the three neuron TDU.

At;=T,~ TB when we have one postsynaptic spike in neu-
ron 7y at tlme T, as in the case when T< 7(R), with Tﬁ
representing the presynaptlc spike times of neuron 3. In the
situation when there are two postsynaptic spikes in neuron y
at times T71 and T,, such that T71 < T,/2 as in the case when
T>1(R), we compute At; as

T, - T,
Atl = Yw},2 - Tﬁj’
(T, ~Ty)+(T,,

Tp,<T,,
Ty, >T,,
Ty), Ty <Tg=T,,

The contribution of multiple spike pairs in the iSTDP
learning above is considered additively [40]. Additive rules
for multiple spike pairs have also been considered in earlier
works [41,42]. Note that in this case, the nearest neighbor
spike-pair interaction for iSTDP learning will not modulate
the synapse gp, due to the presence of the excitatory connec-
tion from neuron 7 to neuron 3, since every time neuron 7y
fires, neuron B will fire within the time scale of the AMPA
synapse between the two neurons and the iSTDP rule from
Eq. (5) implies zero in Ag over this time scale.

We present the spike sequence many times N=0,1,2,...
to the IRU to train the time delays to accurately reflect the
individual ISIs in the sequence. In Fig. 16 we present results
from training the IRU starting from two initial configurations
tuned to detect an ISI of 7=60 msec. In the first configura-
tion, presented in Fig. 16(a), IRU has gg(0)=0.4, corre-
sponding to 7(R) =67 msec, so that T<7(R). Since there is
an excitatory synapse from neuron 7y to neuron (3, in this
case, neuron 7y does not produce a delayed spike at 7{(R) and
the detection unit only receives a single spike output. In Fig.
16(a) (bottom), we show the time of output from neuron 7,
which in this case is at time #,+7+ €. This case corresponds
to a decrease in g with each training of the IRU as discussed
above, until eventually 7(R) <T. At that point the significant
contribution to synaptic rule occurs through Eq. (7), and the
synaptic strength gp increases until again 7> 7(R) and the
TDU produces one spike output. This cycle continues as can
be seen from Fig. 16(a). The synaptic strength evolves to a
final asymptotic state with |T—7(R)|< & and H(R) <T, such
that the DU receives two spikes within 6 msec, for it to
respond with a spike output. Subsequent presentation of the
same spike sequence will successfully elicit a spike response
from the IRU, corresponding to the “decoding” of informa-
tion embedded in the input spike sequence.
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FIG. 16. Successful IRU training. (a) Evolution of the tunable

synaptic strength gx starting from two different initial configura-

tions, as a function of the training iteration. (b) Evolution of the

time delay 7(R) produced by the IRU starting from two different
initial configurations, as a function of the training iteration.

For the second case, we have gg(0)=0.029 leading to
7(R)=50.5 msec, so T<7(R). In this case, each training of
the IRU results in an increase in synaptic strength gr until,
again |T—7(R)|< 6 and the IRU is considered trained when
gr reaches a final asymptotic value.

Successful training of the IRU with inhibitory synapses to
recognize input spike sequence is limited to the bandwidth of
the time-delay component of the IRU. We observe that for
biologically realistic parameter values for the neuron model
and the synaptic strength, the bandwidth is limited to a range
of =20-30 msec. The IRU will fail to train on any ISI out-
side the range of time delays permitted by the time-delay
circuitry. In addition the IRU training is more susceptible to
the presence of an extraneous spike in neuron S of the TDU,
as the spike output from neuron 7y is measured relative to the
spiking time of neuron B in the TDU.

Finally, in Fig. 17 we test the robustness of both IRU
configurations (Figs. 10 and 15) to train upon input IST in the
presence of random jitter. During each training iteration, the
IRU receives the input spike sequence S={t,,7,+7} with ISI
T, modulated by a random jitter of =2 msec, drawn from a
uniform distribution. The IRU with an excitatory time-delay
unit was trained upon ISI 7=100 msec, similar to the con-
figuration considered in Fig. 11 and the IRU with inhibitory
synapse was trained upon an ISI 7=60 msec, similar to the
configuration considered in Fig. 16. For this level of noise in
the ISI during the training, both IRUs are able to successfully
train to recognize the input spike sequence. It should be
noted that for the successful convergence to a final
asymptotic state, the maximum jitter in the training sequence
can be =9 msec. If the jitter is greater than *= ¢ then by
chance |T—7(R)|> & and the IRU cannot converge to a final
steady state.
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FIG. 17. (a) Training IRU with a time-delay unit consisting of
excitatory synapse to detect ISI 7=100 ms in the presence of noise.
(b) Training the IRU with a time-delay unit consisting of inhibitory
synapse to detect ISI 7=60 ms in the presence of noise. In both
cases (top) evolution of synaptic strength gz(N) and (bottom) evo-
lution of the time delay 7(R) starting from two different initial
configurations.

IV. DISCUSSION

We constructed neural circuits for temporal spike pattern
recognition comprised of biologically motivated neurons and
biologically motivated synaptic connections. We refer to
such neural circuitry as the IRU. We begin by describing the
general architecture for the IRU circuitry assigned the task of
spike pattern recognition. We then provide a particular circuit
implementation for the input component of the IRU, the
SSU, and the output of the IRU through the DU. We then
describe two possible architectures for the TDU circuitry of
the IRU, based on its ability to produce a delayed spike
output through the modulation of the excitatory and inhibi-
tory synapse, respectively. While the TDU with inhibitory
synapse was derived from anatomical observation of the AFP
in songbirds, the TDU with excitatory synapse was con-
structed as a biologically feasible implementation of the
“concept” TDU, comprised of a single neuron. The TDU
components in the IRU are modulated through experimen-
tally observed spike timing dependent plasticity rules for ex-
citatory and inhibitory synapses in order for the IRU to re-
spond to a spike sequence of interest, until they match the
IST within certain precision, taken here to be d=4 ms.

The construction of the two IRU circuits to read ISIs in
the chosen sequence are quite general and are not solely
connected with the observations of the AFP circuitry in song-
birds that motivated the construction. It could be, though we
do not have anatomical or electrophysiological evidence for
this at this time, that such circuitry could be used generally
to recognize the specific ISI sequences produced by sensory
systems in response to environmental stimuli. It seems clear
that some circuit of this kind, whether or not it is the one we
construct here, may well be utilized by animals for recogni-
tion of important sensory inputs [43-45]. Those inputs are
transformed by the sensory system into spike sequences, and
in a situation when all the spikes produced are identical, all
the information is represented in the spike sequence. Reading
those sequences in premotor or decision processing is re-
quired for various functional activities.
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We gave examples of the training of the two IRU net-
works using both inhibitory and excitatory synaptic plasticity
rules. While the implementation of the IRU with time-delay
circuitry motivated from songbirds was explored earlier [ 13],
here we describe in detail the abstraction of the TDU from
the songbird AFP circuitry. We describe in detail the condi-
tion under which IRU with excitatory synapse can be trained
to recognize an input ISI sequence and demonstrate through
examples when the IRU will fail to recognize an input ISI
sequence.

We have made two important assumptions in the plasticity
update rules used in the training of the IRUs [46]. Only
neighboring spike pairs between the pre and postsynaptic
neurons were considered for STDP and we assumed that the
effect of STDP modulation sums linearly. The construction
of the IRUs was such that the most significant contribution to
the modulation in the synapse occurs through the neighbor-
ing spike pairs. Multispike pair interactions have been con-
sidered earlier in STDP through natural spike trains [40]. It
would be interesting to consider a differential equation form
for the STDP rules [35] which have the intrinsic mechanism
to account for the effects of multispike interactions and see
how it influences the performance of the IRU scheme. The
second key assumption that we have made in our consider-
ation of the STDP dependent update of synaptic strength is
that the update happens instantaneously, thereby we ignore
the delay of several minutes that exists between the pairing
of pre- and postsynaptic spikes and the induction of synaptic
changes. Our assumption implies that the time scales of syn-
aptic modification are much faster than the spiking rate of
neurons, which is contrary to experimental observations,
however, the mere introduction of delay in the synaptic up-
date rule has no consequence for our results. We tested this
assumption by decreasing the intensity of the STDP update
rule [, in Eq. (4) and g, in Eq. (6)] such that the increment
in the synaptic strength during each training session is much
smaller. Although this resulted in an increase in the number
of training sessions for the IRU the overall results were the
same and the IRU was trained to recognize the input spike
sequence.

To examine the generality of our construction of an IRU
we have used both conductance based Hodgkin-Huxley
model neurons and phenomenological quadratic integrate
and fire neurons at the nodes of our networks for both IRU
implementations (results for the quadratic integrate and fire
model not shown) using the same synaptic currents connect-
ing the neurons. While the results differ in details, each IRU
shows much the same learning properties, leading us to be
confident that a construct such as an IRU can be a property
of many different specific realizations of neurons at the
nodes of the time delay and IRU circuits as long as the pat-
tern of inhibition and excitation essential to the function of
the circuit is maintained.

Our analysis does not address the response of an IRU to a
desired ISI sequence when it is embedded in environments
with many extraneous spikes, and it does not address the
reliability of the synaptic connections as a potential source of
error in reading ISI sequences. It may be that the actual
biological environments in which IRUs operate, assuming
them to be present, require a statistical measure of detection
efficacy.
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Finally, we wish to note that although our motivation for
the IRU construction was derived from the observed neural
circuitry for song learning in songbirds, to our knowledge
there is no anatomical evidence at this time in any biological
system of the IRU implementation we have developed here
for the specific task of temporal spike pattern recognition.
The task of decoding sensory information embedded in spike
patterns produced by the brain is vitally important for bio-
logical function and it may well be that IRU circuitry would
be one way for the neural system to learn to respond to
correct sensory inputs.
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APPENDIX: LINEAR MAP FOR LEARNING RULE

We want to emphasize that successful IRU training is de-
pendent on two key properties exhibited by the IRU.

(1) The monotonic increasing or decreasing relationship
of the time delay 7(R) produced by the time-delay units with
inhibitory or excitatory synaptic modulation.

(2) The spike timing dependent plasticity rule governing
the evolution of synaptic strength dependent on the relative
timing of the pre- or postsynaptic spikes.

In order to explore the generality of IRU learning, depen-
dent on the two key properties presented above, in this sec-
tion we consider an approximation of the learning rule for
the evolution of the inhibitory synapse, and the delay pro-
duced by each delay unit as a function of the strength of
inhibitory connection from B8— v, as shown in Figs. 18(a)
and 18(b). We compute an analytical expression for the num-
ber of training sequence steps required for a delay unit (for
IRU with inhibitory synapses) to detect a spike within & ms
resolution of an ISI. The approximation shown in Figs. 18(a)
and 18(b) results in the following:

A
281 _ pAr (|Af| < A)=-bAr+24b (A <|Af] <2A)
Iy

=0 (|A1>24), (A1)

with 7=ag;+c¢ (g <g;<gy) and 7=0 (g;<g;) and T
=mgy) (g,>gy). The fact that Ag=0 for |A#{>2A implies
that, learning will occur only for At in the range of =2A ms,
or in the map f(g,(N)) the allowed variation in g,(N) is from
(T-c-=2A)/a to (T-c+2A)/a. Depending on the initial in-
hibitory synaptic strength of g,(0)=g,, with the above linear
learning rule, the number of steps for the delay unit to set its
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FIG. 18. (Color online) (a) Linear approximation for the delay
produced by the time-delay unit with inhibitory synapse. (b) Linear
approximation for the iSTDP learning rule. (c) Linear map for the
evolution of the inhibitory synaptic strength as a function of the
IRU training iteration number. Sample trajectory of the evolution of
inhibitory synaptic strength following the linear iSTDP learning
rule is shown by a dotted red line.

delay output within & ms of actual ISI time that it needs to
detect, N(5), can be obtained as follows.

The trivial case of the initial condition being within the &
window of actual ISI, results in N(5)=0. In the situation
when |Af|<A, the number of training iterations required for
learning is given by N(8)=1+n,, where n; can be computed
as follows. We begin in the region At=T-7,<A, which cor-
responds to initial inhibitory synaptic strength lying in the
interval (T—c-A)/a<g,(0)<(T—c-0J)/a. At each iteration
step i, as shown in the example path in Fig. 18(c), g(i),
increments by amount, Ag,(i)/(1—ab’), where b’ =bg;,. The
total number of integer steps required for g;(0) =g, to evolve
to within the 6 ms window of 7, is then given by

ln(—5 )
B (7 - 7))

= In(1-ab’) | (42)

where 7y=ag,+c, and [x] is the largest integer less than or
equal to x.

It is important to note the factor of b’ appearing in the
denominator of the above equation. In the scheme of learn-
ing rule we have used in the main calculations, as At—0, b,
which represents the slope of the learning curve approaches
0, and as we can see from above, theoretically the exact
convergence of learning, i.e., Ar=0 requires an infinity of
training steps.
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In the situation when the initial condition is such that A
<|A#|<2A, the number of training iterations required is
given by N(8)=2+n,+n,, where

A
In| ———
|2A+ 70— T|
nI: -

)

In(1 +ab’)
=
Inf ————
_ [(T-c) - ag]
"o In(1 —ab’) ’
g+l _ _ _
§=go(1+ab’)"1+1+((1+ab) 1)(2A (T c))'

a
(A3)
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Linear fit to the learning rule used in the main text, which
is abstracted from empirical fit to entorhinal cortex data,
gives A=5 ms, b'=0.02 ms~! and the linear r(g) curve im-
plies a=0.9 ms, ¢=42.58 ms, g;=0.75, and g;;=22.0. In this
approximation the maximum number of steps will corre-
spond to beginning with the At error of £2A=10 ms. For a
particular case of 7=60 ms, and beginning with 7y)=51 ms,
giving Ar=9 ms, and taking =1 ms, solving the above
equation gives N=179, as the total number of training cycles
for the delay unit to learn.

We thus see that for IRU with inhibitory synapses, result-
ing in a monotonic increasing relationship of the time delay
7(R) with respect to the synaptic strength gg, the IRU can be
trained in a finite number of training iterations using the
iSTDP rule that satisfies the two key properties of Ag>0
when Ar>0 and Ag <0 when Ar<<0.
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